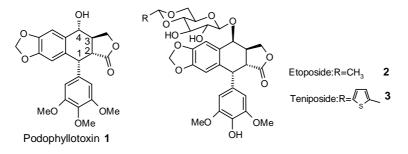
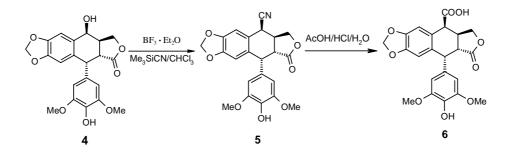
Stereoselective Synthesis and Anticancer Activities of New Podophyllotoxin Derivatives: 4-β-Cyano-4-Deoxy-4'-Demethylepipodophyllotoxin and 4-β-Carboxyl-4-Deoxy-4'-Demethylepipodophyllotoxin


Zai Xin CHEN, Wei Yong MA*, Chun Nian ZHANG*

Department of Medicinal Chemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 200040

Abstract: 4- β -Cyano-4-deoxy-4'-demethylepipodophyllotoxin **4** was synthesized from 4'-de -methylepipodophyllotoxin and Me₃SiCN in the presence of BF₃ • Et₂O. 4- β -Carboxyl-4-deoxy-4'-demethylepipodophyllotoxin **5** was obtained by hydrolyzing **4** in HOAc. Both of them show very high anticancer activities against L₁₂₁₀ and KB cell lines *in vitro*.

Keywords: Podophyllotoxin, derivative, anticancer activities.


Podophyllotoxin 1, isolated from *Podophyllum pelatum L*. or *Podophyllum emodi L*., shows high antitumor activity. But, it cannot be used as antitumor agent clinically because of its serious side-effect. Its semisynthetic derivatives, Etoposide 2 and Teniposide 3, are wide-used as important anticancer drugs¹. However, they have several limitations such as poor water solubility, metabolic inactivation and development of drug resistance. To overcome these limitations, many derivatives of podophyllotoxin have been synthesized in many laboratories²⁻⁵. It has been recognized that β substitution at C-4 position is necessary to the compounds with high activity. Our group has established a methodology to synthesize 4- β -substituted derivative of podophyllotoxin stereoselectively³. This communication reports the synthesis and anticancer activities of 4- β -cyano-4-deoxy-4'-demethylepipodophyllotoxin and 4 - β - carboxy- 4 -deoxy-4'-de-methylepipodophyllotoxin, which are important intermediates for synthesizing 4- β -carbon atom substituted derivatives.

Zai Xin CHEN et al.

The synthetic approach started from 4'-demethylepipodophyllotoxin **4**. On the basis of our established methodology³, 4- β -substituted derivative of **1** or **4** can be obtained from **1** or **4** with corresponding HX (X = nucleophilic anion), in the presence of BF₃ • Et₂O at -15 °C. We, at first, used potassium cyanide as the nucleophilic agent. The yield was rather low, because of low solubility of KCN in organic solvent and no sufficient amount of CN⁻ being formed. HCN is very toxic. However, in silicon agents, trimethylsilyl group often reacts as if it were a proton. So we used trimethylsilyl cyanide, a versatile silicon agent, to replace HCN. The result is very satisfying with high yield and 100% stereospecificity ($J_{3,4} = 7.34$ Hz). In a mixed solvent of acetic acid and hydro -chloric acid compound **5** can be easily hydrolyzed to the carboxylic acid **6**.

Scheme 1

In vitro anticancer potencies compounds **5** and **6**, and of the control compound Etoposide, against L_{1210} and KB cell lines are reported in **Table 1**. The further synthesis of derivatives will be reported in due course.

Compound	Inhibition of L ₁₂₁₀ IC ₅₀ (µg/ml)	Inhibition of KB IC ₅₀ (µg/ml)
5	0.00348	0.0531
6	0.164	10
Etoposide	0.155	0.308

Table	1

Experimental

All melting points were taken on a Fischer-Johns melting point apparatus and uncorrected. EI-MS and HR-MS spectral analyses were determined on a Varian MAT212 instrument and computer SS-MAT. ¹H-NMR specta wre obtained using Brucker AM-400 spectrometers with TMS as the internal standard. All chemical shifts are reported in ppm. Optical rotations were measured with a Perkin-Elmer 214MC polarimeter, using DMF as solvent.

506

Stereoselective Synthesis and Anticancer Activities of New Podophyllotoxin Derivatives

4-β-Cyano-4-deoxy-4'-demethylepipodophyllotxin 5

4'-Demethylepipodophyllotoxin (10 g, 10 mmol) was dissolved in 350 mL of CHCl₃, Me₃SiCN (4 mL, 30 mmol) was added to the solution. BF₃ · Et₂O (4.5 mL) was added to the mixture dropwise at -15° C (about 1h). After completion of addition of BF₃ · Et₂O, stirring was continued for 1~2 h. The reaction was quenched with 4.5 mL of pyridine. The solution was washed with 5% NaHCO₃ solution, 5% HCl, water and brine, dried over Na2SO4, concentrated in vacuo. The residue was purified by column chromatography on silica gel with AcOEt/cyclohexane (1/1). Recrystallization from acetone gave 5 (7.8 g, 76.3%), mp: 246~248 °C. [α]_D²⁵ 66.4 (c 0.5, DMF). EI-MS: 409 (M⁺), 382 (M⁺-CN). HR-MS: C₂₂H₁₉NO₇ calcd 409.116140, obsd 409.11572. ¹H-NMR (400MHz, DMSO-d₆): δ_{ppm} 3.00 (m, 1H, H-3), 3.13 (m, 1H, H-2), 3.63 (s, 6H, 2xOCH₃), 4.08 (t, 1H, J = 8.14, H-11_{β}), 4.55 (t, 1H, J = 7.91, H-11_{α}), 4.60 (d, 1H, J=5.43, H-1), 4.69 (d, 1H, J = 7.34, H-4), 6.05 (d, 2H, J = 10.15, OCH₂O), 6.20 (s, 2H, H-2',6'), 6.59 (s, 1H, H-8), 7.10 (s, 1H, H-5). ¹³C-NMR (400MHz, DMSO-d₆): δ_{ppm} 32.7 (C-3), 32.9 (C-2), 42.4 (C-1), 42.6 (C-4), 56.0 (OCH₃), 68.9 (C-11), 101.6 (OCH₂O), 105.8 (C-6'), 108.0 (C-2'), 108.5 (C-5), 110.3 (C-8), 118.7 (CN), 123.4 (C-14a), 130.0 (C-8a), 131.6 (C-6), 134.8 (C-7), 146.7 (C-4'), 147.1 (C-5'), 147.7 (C-3'), 173.1 (C=O).

4-β-Carboxy-4-deoxy-4'-demethylepipodophyllotxin (6)

Compound **5** (1 g) was dissolved in acetic acid (60 mL), and added concentrated HCl (10 mL) and water (10 mL). The flask was heated in an oil bath 75 °C. The solution was stirred until it turned to clear, and concentrated *in vacuo*. The residue was extracted with AcOEt, washed with water several times and brine, dried over NaSO₄. The solvent was evaporated *in vacuo*. The solid was purified on silica gel column chromatography with acetone/CH₂Cl₂/AcOH (75/25/0.8). Recrystallization from MeOH gave **6** (0.5 g, 47.8%), mp: 254~256°C. [α]_D²⁵-70 (c 0.2, DMF). EI-MS: 428 (M⁺),382 (M⁺-COOH-H). HR-MS: C₂₂H₂₀O₉ calcd 428.110719, obsd 428.11037. H¹-NMR (400MHz, CDCl₃): 3.03-3.12 (m, 2H, H-2, 3), 3.65 (s, 6H, 2*OCH₃), 3.88 (d, 1H, *J* = 5.84, H-1), 4.19 (d, 1H, *J* = 6.23, H-4), 4.45 (m, 2H, H-11), 5.92 (d, 2H, *J* = 9.27, OCH₂O), 6.12 (s, 2H, H-2', 6'), 6.47 (s, 1H, H-8), 7.10 (s, 1H, H-5). ¹³C-NMR (400MHz, CDCl₃): δ_{ppm} 31.7 (C-3), 41.3 (C-2), 46.1 (C-1), 46.4 (C-4), 56.3 (OCH₃), 70.2 (C-11), 101.2 (OCH₂O), 106.0 (C-2', 6'), 108.8 (C-5), 109.2 (C-8), 121.5 (C-14a), 130.3 (C-8a), 130.8 (C-6), 134.2 (C-7), 146.7 (C-4'), 147.1 (C-5'), 147.6 (C-3'), 175.8 (C=O), 176.5 (COOH).

Acknowledgments

We are gratefully acknowledged for supports this research by the New Drug Research Foundation of Shanghai Institute of Pharmaceutical Industry.

Zai Xin CHEN et al.

References

- 1. P. J. O'Dwyer, B. Leyland-Jones, M. T. Alonso, S. Marsoni, R. E. Witties, J. Med. Chem., **1985**, *28*, 692.
- S. F. Yin, Z. G. Wang, W. Y. Ma, X. H. Chen, T. D. Wang, C. N. Zhang, Acta Pharm. Sinica, 1993, 28, 758.
- Z. G. Wang, W. Y. Ma, C. N. Zhang, *Acta Chim. Sinica*, **1992**, *50*, 698.
 Y. L. Zhang, X. Guo, Y. C. Cheng, K. H. Lee, *J. Med. Chem.*, **1994**, *37*, 446.
 A. Pelter, R. S. Ward, W. Y. Ma, *J. Nat. Prod.*, **1994**, *57*, 1598.

Received 25 October 1999 Revised 10 March 2000